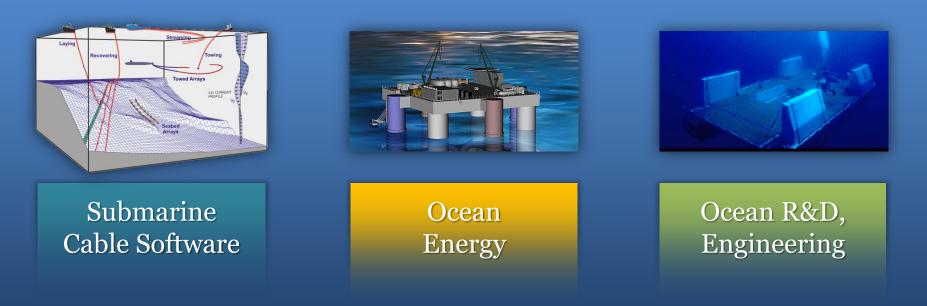
MAKAI OCEAN ENGINEERING

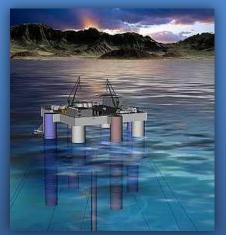
CAF Conference in Panama October 26th, 2015

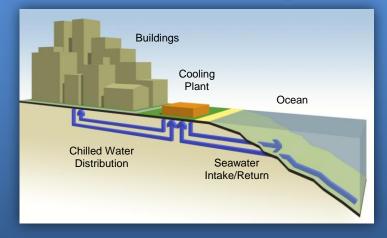
Jose Andres, P.E., Ph.D. President & CEO Greg Rocheleau Engineering Manager


Outline of Talk

- 1. Makai Ocean Engineering, Inc.
- 2. OTEC: For the Future
- 3. District Cooling and SWAC
 - Three types
 - What makes a good site?
 - How to evaluate sites
 - Real-world projects
 - Sites in the Caribbean & Latin America
- 4. Challenges In Development

Who is Makai?


Ocean Technology Company • Founded 1973 • 30 employees • Ocean Energy since 1978


- World's #1 cable software
- Installed +250k miles
- Pioneers of SWAC/OTEC
- World's largest OTEC plant
- Navy underwater vehicles
- Subsea sensor networks

Ocean Renewable Energy

Electricity

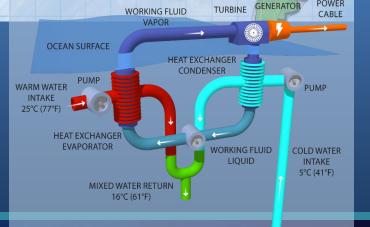
District Cooling

<u>OTEC</u>

Ocean Thermal Energy Conversion

Seawater Air Conditioning/District Cooling

SWAC/DC


Makai is a leading engineering firm for these technologies

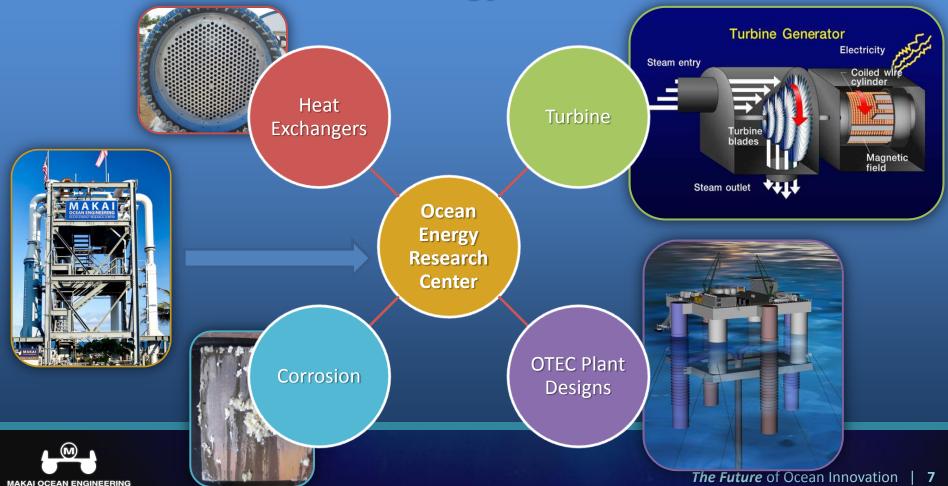
Ocean Thermal Energy Conversion – OTEC

ΔT around the world

- 24/7, baseload & dispatchable power Stable
- Huge ~4x global electricity need
- **Offshore** *Doesn't consume land*, *water*, *or food*
- Clean Near zero carbon emissions

POWER

Makai's Ocean Energy Research Center


World's largest operational OTEC plant • Navy funded • Kailua-Kona, Hawaii

Mission Statement: To reduce the cost of OTEC power

Makai's Ocean Energy Research Center

Design & Engineering

OTEC: Commercialization Strategy

100 kW Demo Plant, Makai Develop low-cost HXs, controls

2015-2017

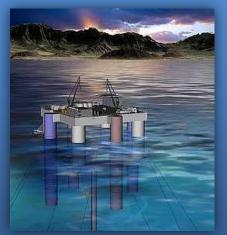
1 MW Pilot Plant Electricity \$ covers O&M

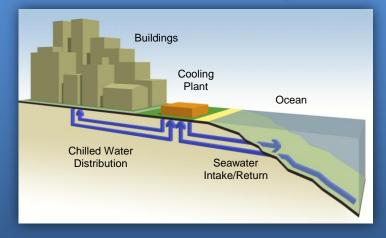
2017-2020

10 MW Pilot Plant, Offshore Semi-commercial Plant

2020 - 2025

- 1. 100kW: Reduce cost of HXs, control system
- 2. 1MW: Demonstrate cost of electricity onshore
- 3. 10MW: Demonstrate pilot plant offshore, retire risk
- 4. 100MW: Build full commercial plant


"Baseload & dispatchable power, such as OTEC, is needed to achieve 100% renewable goals in islands like Hawaii."


50-100 MW Pilot Plant, Offshore Full Commercial Plant

Ocean Renewable Energy

Electricity

District Cooling

<u>OTEC</u>

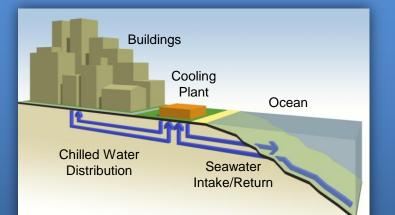
Ocean Thermal Energy Conversion

Seawater Air Conditioning/District Cooling

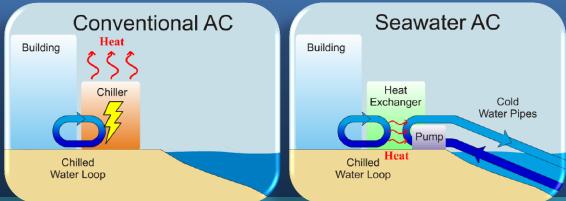
SWAC/DC

Makai is a leading engineering firm for these technologies

SWAC & District Cooling Systems


Benefits

- Lower energy usage & costs
- Lower lifecycle costs
- Reduced emissions
- Centralized equip, easier O&M
 Makai experience
- Many district cooling designs
- Currently modeling a district cooling system in Mauritius
 Improved w/ natural cooling... lakes, oceans, rivers.


SWAC: Seawater Air Conditioning

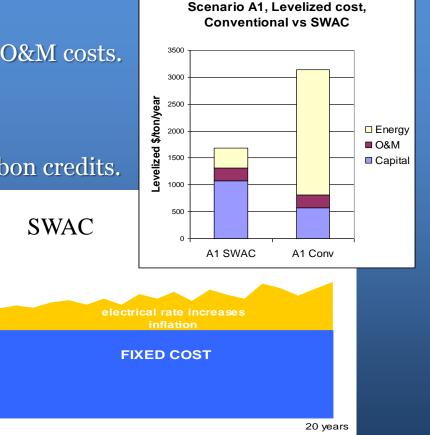
Main Components:

- Offshore pipes
- Pumps
- Heat exchangers
- Chilled water loops

- Large renewable energy projects >\$50M
- Payback can be 4-10 years
- Electricity for AC reduced by up to 90%
- Commercial, Cost-Effective Today
- Makai = designer of most operating systems

Why SWAC?

- <u>Lucrative</u>: high CAPEX, but lower electrical, O&M costs.
 Payback can be 4 10 years.
- <u>Stable</u>: reliable, low-, stable-cost cooling.
- <u>Green</u>: reduce electricity/water use, gain carbon credits.


ost

100%

80%

0

Why SWAC?

Secondary uses of water

- Power plants can save up to 20% capacity in summer
- Eco tourism
- Aquaculture, agriculture, etc.

Cooling for Power Plants: Natural Gas, Petrol-fired (e.g., Montego Bay)

Deep Seawater Spa (Intercontinental Resort)

Aquaculture (Big Island Abalone)

Pharmaceuticals, Biofuels (Cellana, Cyanotech)

Natural Water Cooling: Three Types

1. DIRECT Cooling:

Deep or cold water (pure 'SWAC') ~90% electrical savings No chillers

2. HYBRID Cooling:

Medium depth & temperature 75% electrical savings

3. CONDENSER Cooling: Shallow or warm water 25% electrical savings

Bora Bora

Ideal SWAC/DC Site

- Deep cold water near shore
- Large cooling loads
- High electrical rates
- Proximity to Marine Contractors
- Bldgs close to shore, compact network
- High annual AC utilization
 - Secondary uses of water

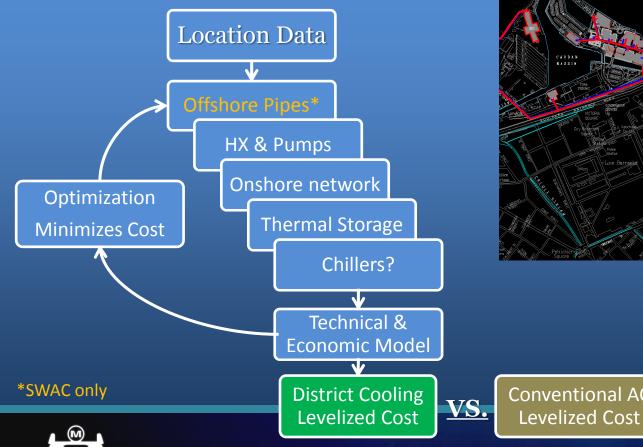
The more favorable, the better!

Many variables affect profitability of SWAC systems.

How to decide which factors dominate?

Need to quantify benefits to make intelligent decisions...

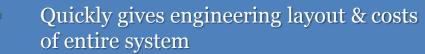
The **METHOD** Model


Makai Economic Thermal & Hydraulic Optimization & Design

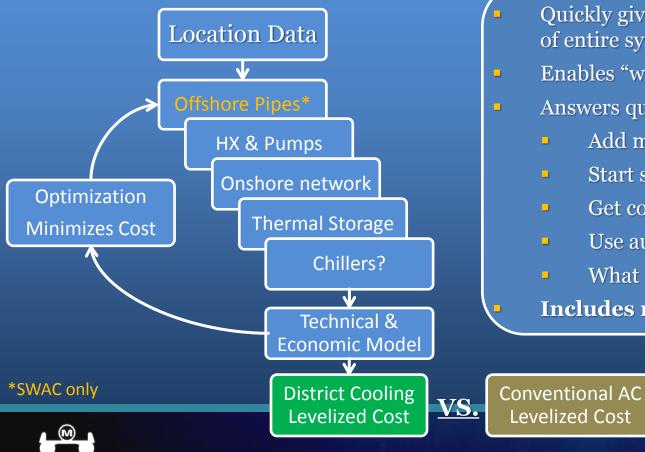

- Optimizes & designs district cooling networks
- Developed over 30 years doing real district cooling designs
- Recently had major upgrade with over \$360k investment from U.S. Navy

The **METHOD** Model

MAKALOCEAN ENGINEERING



Fairly compares DC cost to conventional AC The Future of Ocean Innovation | 17

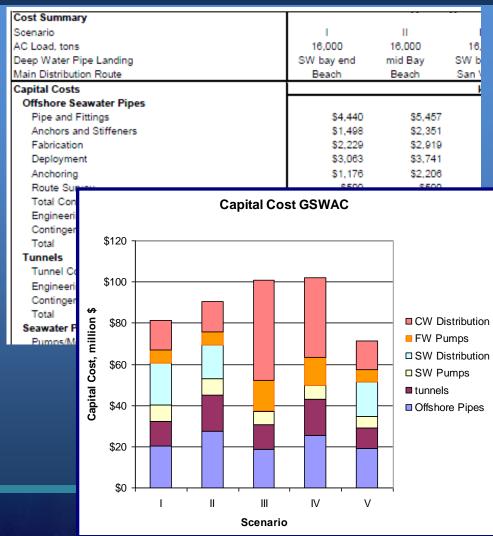

The **METHOD** Model

Benefits

- Enables "what ifs" to make decisions
- Answers questions like:
 - Add more AC load?
 - Start small and expand later?
 - Get colder seawater for direct AC?
 - Use auxiliary chillers?
 - What is the payback at 1/2 load?

Includes real construction costs

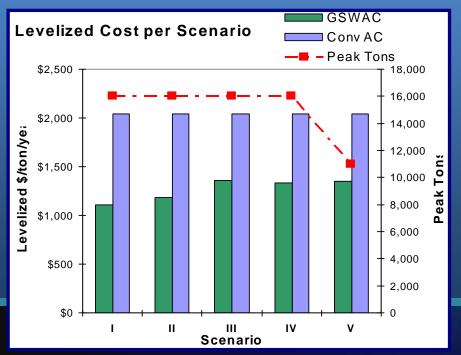
The Future of Ocean Innovation Fairly compares DC cost to conventional AC 18

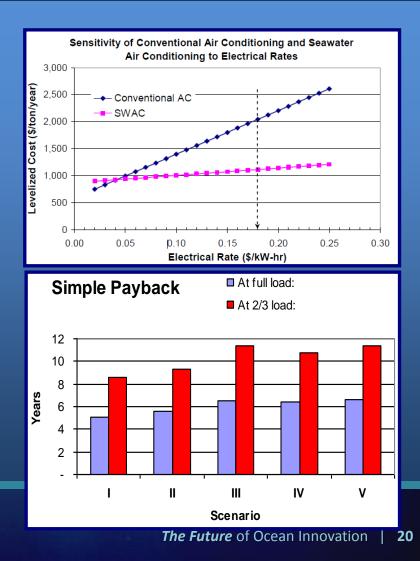

METHOD Model

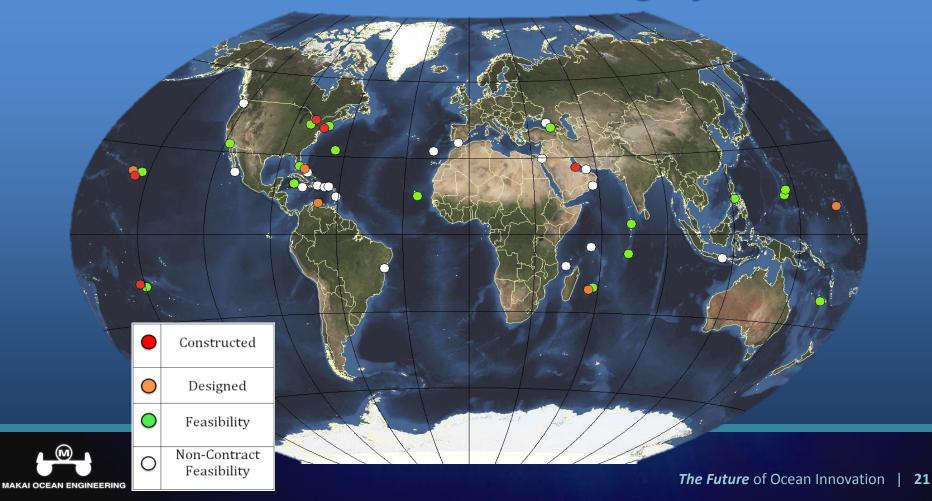
Technical Output

- Solves all flows, pressure, temps
- All pipe/HX/valve sizes optimized
- Accounts for all heat gains

Cost Output

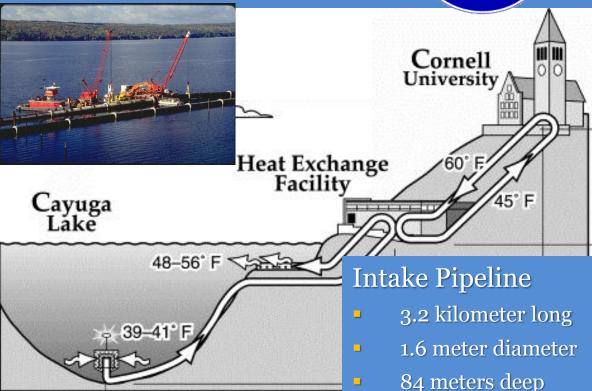

- Gives CAPEX, OPEX, levelized costs
- Optimizes concept design based on lowest cost / shortest payback




METHOD Cost Analysis

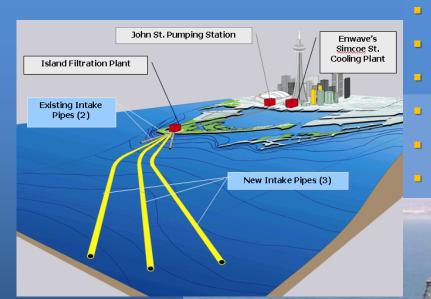
- Rapid "what-if" analysis of various scenarios
- Sensitivity studies (e.g. electricity rates)
- Compares to Conv AC, gives payback periods

Makai's Natural Water Cooling Systems



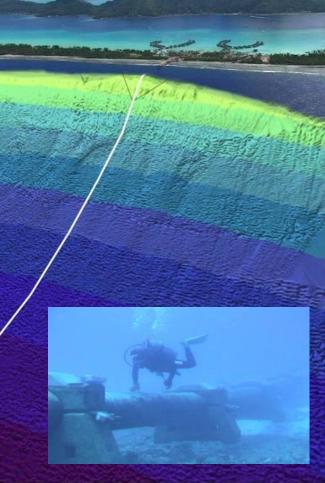
Cornell University – 1999

\$60M project

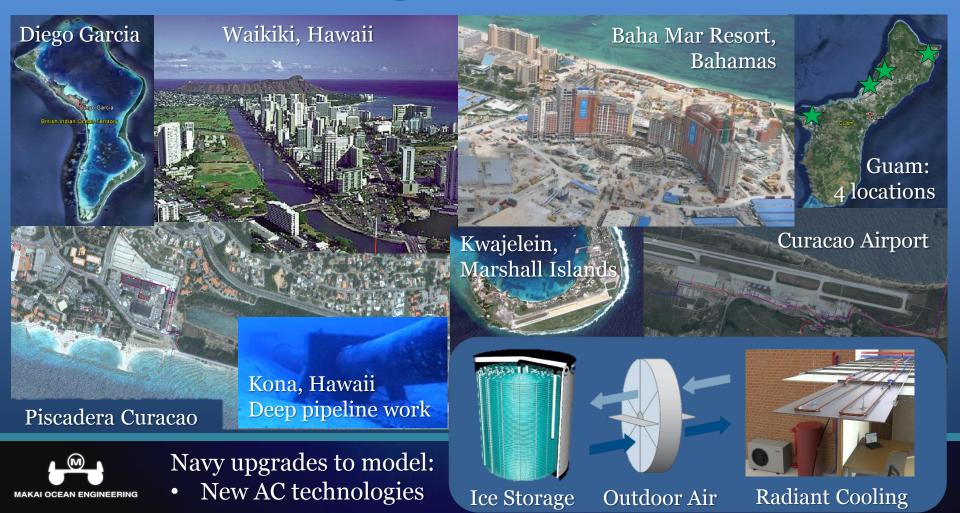

- SAVES ~25 MW of peak electricity
- 86% savings on cooling electricity
- Trophy case full of awards

Toronto - 2001

SAVES 61 MW of peak electricity 90% energy reduction over chillers Three pipes: 1.6m dia, 5 km, 84m deep ~12 km of underground distr. pipe Reduce 79,000 tonnes CO2, + NOx, SOx 58,000 tons cooling, expand to 95,000 Filtered and used for drinking water!



InterContinental Resort, Bora Bora – 2006


- First commercial deep seawater cooling system
- 450 tons Saves >95% energy for cooling
- 900m deep, steep, innovative pipeline for cliff edge
- Deep seawater used for marketing, spa, etc.

Studies and Designs Since 2010

METHOD Analysis of Caribbean SWAC sites

- CAF funded competitively bid study
- Makai performed work from 2013-2014

Tour Guid

21°20'11.75" N 65°04'56.99" W elev -17699 ft eye alt 1032.72 mi

METHOD Analysis of Caribbean SWAC sites

Down-selected to 6 sites:

	System Parameters		SWAC Costs			Conventional Cooling		Results	
	Peak	Electrical	Capital	Operating	Levelized	Operating	Levelized	Levelized	Simple
	Load	Rate	Cost	Cost	Cost	Cost	Cost	Savings	Payback
	[tons]	[\$/kW-hr]	[k\$]	[k\$]	[\$/ton/year]	[k\$]	[\$/ton/year]		[years]
Fort-de-France	3,042	\$0.28	\$57,080	\$2,319	\$5,266	\$5 <i>,</i> 926	\$4,251	-24%	15.8
Basse-Terre	2,335	\$0.28	\$32,380	\$1,065	\$4,385	\$4,084	\$4,314	-2%	10.7
Puerto Plata	6,835	\$0.32	\$70,150	\$2,068	\$2,254	\$18,145	\$4,691	52%	4.4
Kingston	23,340	\$0.45	\$307,190	\$10,153	\$3,906	\$65,034	\$6,567	41%	5.6
Montego Bay	7,877	\$0.45	\$108,550	\$4,789	\$3,386	\$28,593	\$6,428	47%	4.6
Ocho Rios	3,305	\$0.45	\$47,700	\$1,703	\$3,393	\$12,082	\$6,425	47%	4.6

• French Islands: Small loads, large distribution system, low elec. rates hurt

- Kingston & Santo Domingo: Complex distribution system, long offshore pipes
- Montego Bay & Puerto Plata: studied further

METHOD Analysis of Montego Bay

Levelized cost

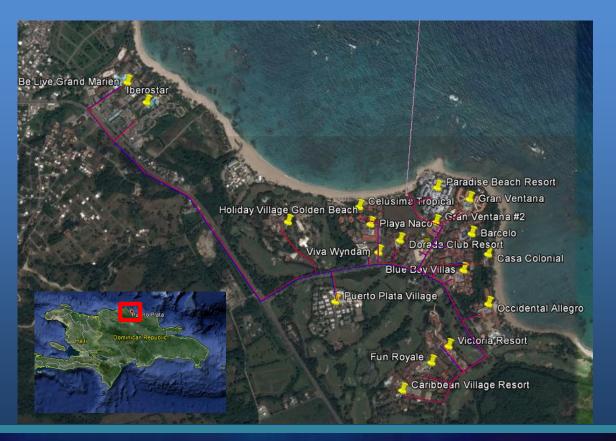
- SWAC: \$3,500/ton/yr
- Conv AC: \$5,300/ton/yr
 CAPEX: \$100.3 million
 Peak load: 7,700 tons
 SIMPLE PAYBACK: 6yrs

Holiday Inn SunSpree Resort Montego Bay Sandals Royal CaribbeanHotel Riu Palace Jamaica Hotel Riu Montego Bay

Sandals Montego Bay

Sea Garden Beach Resüffiversity of the West Indies (Western Jamaica of University of Technology University of Technology El Greco Resort

Sunset Beach Resort and Waterpark


The Oasis at Sunset Secrets St. James Montego Bay Secrets Wild Orchid Montego Bay Bogue Power Station Cooling Tower #1 Bogue Power Station Cooling Tower #2

METHOD Analysis of Puerto Plata

Levelized cost

- SWAC: \$2,400/ton/yr
- Conv AC: \$4,700/ton/yr
 CAPEX: \$68.4 million
 Peak load: 6,835 tons
 SIMPLE PAYBACK: 4.5yrs

District Cooling & SWAC in the Caribbean

KINGSTON - JAM	MEDIUM
SANTO DOMINGO - D.R.	LOW
SAN JUAN - P.R.	HIGH
MAYAGUEZ - P.R.	VERY LOW
PUERTO PLATA - D.R	VERY HIGH
MONTEGO BAY - JAM	VERY HIGH
SAN ANDRÉS - COL	MEDIUM
PUNTA CANA - D.R.	LOW/MEDIUM
OCHO RÍOS - JAM	HIGH
PONCE - P.R.	LOW

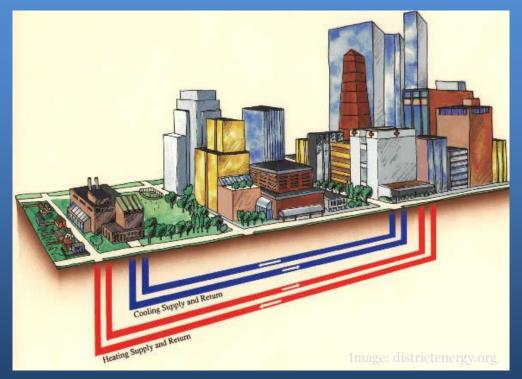
District Cooling & SWAC in Latin America

CIUDAD DE PANAMÁ - PAN	HIGH
CANCÚN - MEX	MEDIUM/HIGH
RECIFE - BRA	LOW/MEDIUM
SALVADOR - BRA	HIGH
BARRA DE TIJUCA - BRA	MEDIUM/HIGH
VIÑA DEL MAR - CHI	LOW
RÍO DE JANEIRO - BRA	HIGH
BRASILIA - BRA	LOW/MEDIUM
ACAPULCO - MEX	MEDIUM/HIGH
MONTEVIDEO - URU	LOW
CARTAGENA - COL	HIGH
SANTA MARTA - COL	LOW/MEDIUM
CABO SAN LUCAS, MEX	HIGH

Panama City, Panama Overall Rank: HIGH

Bella Vista

- Centrally located DC system (red dot) would be 1.5km from all loads
- Very large cooling load Some of the largest buildings in L. Amer.
- Multiple DC systems could be built to serve this central area
- Ocean water in Bahia de Panama is warm and shallow


Exposicior

Challenges to District Cooling / SWAC

- Requires large project development experience
- Need of long-term financing for 'new' technology
- Many stakeholders regulations and customers
- NEED LOCAL CHAMPION
 - Knows local political / regulatory / business ecosystem
 - Committed to project realization
 - Persuade 'status quo' (HVAC & utilities) to be involved

